CORROSION-RESISTANT ALLOYS

LION® C-22® alloy

A most versatile nickelchromium-molybdenum-tungsten alloy available today with improved resistance to both uniform and localized corrosion as well as to a variety of mixed industrial chemicals. The C-22 alloy exhibits superior weldability and is used as overalloy filler wire and weld overlay consumables to improve resistance to corrosion.

Laboratory Corrosion Tests Field Evaluation **Typical Applications Aqueous Corrosion Data** Resistance to Localized Attack 10 **Thermal Stability**

3

4

5

6

8

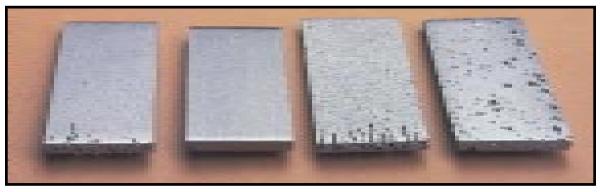
11 12

13

Contents

Principal Features

Isocorrosion Curves Physical Properties


Tensile Data	15
Fabrication	16
Welding	18
Machining	2

Hardness and Impact Strength 14

Availability 22 Sales Office Addresses 24

LION® C-22® alloy Excels in Pitting Resistance

LION LION LION LION C-4 alloy C-22 alloy C-276 alloy 625 alloy

Samples were subjected to a solution of 11.5% $\rm H_2SO_4$, 1.2% $\rm HCI_1$ 1% $\rm FeCl_3$ AND 1% $\rm CuCl_2$. Solutions for coupons 625 and C-4 were at 102°C, while C-276 and C-22 were at 125°C.

PRINCIPAL FEATURES

Outstanding Corrosion Resistance

LION® C-22® alloy is a versatile nickel-chromiummolybdenum-tungsten alloy with better overall corrosion resistance than other Ni-Cr-Mo alloys available today, including LION C-276 and C-4 alloys and alloy 625. C-22 alloy has outstanding resistance to pitting, crevice corrosion, and stress corrosion cracking. It has excellent resistance to oxidizing aqueous media including wet chlorine and mixtures containing nitric acid or oxidizing acids with chloride ions. Also, C-22 alloy offers optimum resistance to environments where reducing and oxidizing conditions are encountered in process streams. Because of such versatility it can be used where "upset" conditions are likely to occur or in multi-purpose plants.

C-22 alloy has exceptional resistance to a wide variety of chemical process environments, including strong oxidizers such as ferric and cupric chlorides, chlorine, hot contaminated solutions (organic and inorganic), formic and acetic acids, acetic anhydride, and seawater and brine solutions. C-22 alloy resists the formation of grain-boundary precipitates in the weld heat-affected zone. thus making it suitable for most chemical process applications in the as-welded condition.

Product Forms

C-22 alloy is available in most common product forms: plate, sheet, strip, billet, bar, wire, covered electrodes, pipe, and tubing.

Wrought forms of this alloy are furnished in the solution heattreated condition unless otherwise specified.

Applications

Some of the areas of use for C-22 alloy are:

- Acetic Acid/Acetic Anhydride
- Acid Etching
- Cellophane Manufacturing
- Chlorination Systems
- Complex Acid Mixtures
- Electro-Galvanizing Rolls
- Expansion Bellows
- Flue Gas Scrubber Systems
- Geothermal Wells
- HF Furnace Scrubbers
- Incineration Scrubber Systems
- Nuclear Fuel Reprocessing
- Pesticide Production
- Phosphoric Acid Production
- Pickling Systems
- Plate Heat Exchangers
- Selective Leaching Systems
- SO₂ Cooling Towers
- Sulfonation Systems
- Tubular Heat Exchangers
- Weld Overlay-Valves

Field Test Program

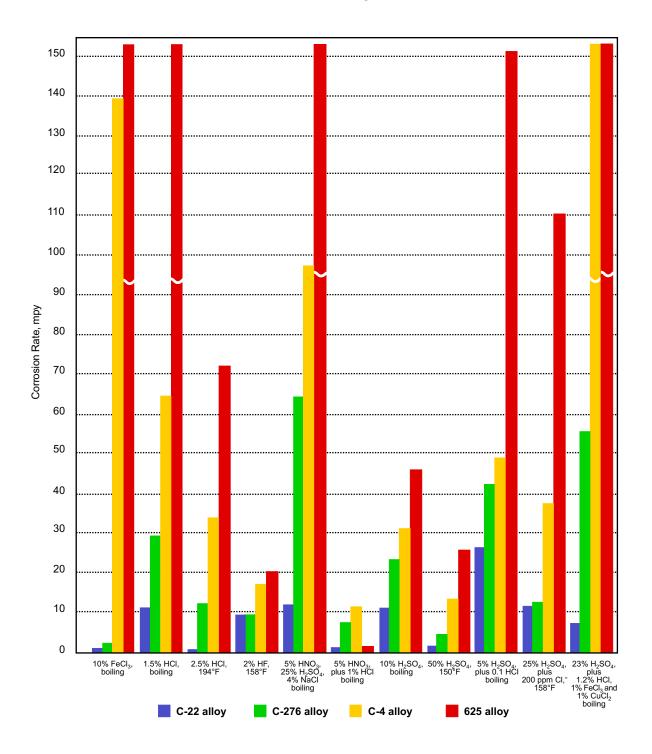
Samples of C-22 alloy are readily available for laboratory or inplant corrosion testing.

Analysis of corrosion resistance of the tested material can also be performed and the results provided to the customer as a free technical service. Test C-22 alloy and compare. Contact any of the convenient locations shown on the back cover of this brochure for test coupons and information.

Specifications

LION C-22 alloy is covered by ASME Section VIII, Division I. Plate, sheet, strip, bar, tubing, and pipe are covered by ASME specifications SB-574, SB-575, SB-619, SB-622 and SB-626 and by ASTM specifications B-574, B-575, B-619, B-622, and B-626. DIN specification is 17744 No. 2.4602 (all forms), TUV Werkstoffblatt 479 (all forms). C-22 alloy falls within the range of UNS number N06022 but has a more restricted composition for improved performance. These improvements are of such significance that it has been widely patented throughout the world.

Material Safety Data Sheets


For information concerning material safety data, ask for Material Safety Data Sheets H2071 and H1072.

Nor	minal Chei	mical Co	mposition	, Weigh	t Percer	nt			
Ni	Со	Cr	Мо	w	Fe	Si	Mn	С	V
56ª	2.5**	22	13	3	3	0.08**	0.50**	0.010**	0.35**

^{*} The undiluted deposited chemical composition of C-22 alloy covered electrodes has 0.02% carbon and 0.2% Si.

^{**} Maximum a As balance

Laboratory Corrosion Tests Demonstrate Superiority of LION[®] C-22[®] alloy

Field Evaluations

Exhibits Excellent Corrosion Protection

Chemical Processing Industry

Reactor Vessel					
10-15% Sulfuric Acid + Solids/Impurities					
212°F (100°C) — 12 Months					
Corrosion					
Rate					
(mpy) Remarks					
316L Stainless Steel	>6	61 Sample Dissolved			
Carpenter 20Cb-3® alloy	>!	57 Sample Dissolved			
Alloy 825	>58 Sample Dissolved				
LION® B-2 alloy	>58	Sample Dissolved			
LION® 625 alloy	29	Severe Corrosion Attack			

Severe Corrosion Attack

4.7 Slight Corrosion Attack

Flue Gas Desulfurization (FGD)

Pulverized Coal Fired Unit
4.8% Sulfur
Outlet Duct
129°F (54°C) — 27 Months

		Dept	h of Attack
		Pitting	Crevice
		(in.)	(in.)
316L S	stainless Steel	0.011	0.015
Alloy 9	04L	0.010	0.005
Jessop	JS700 [®] alloy	0.010	0.011
LION	625 alloy	No Attack	0.005
LION	C276 alloy	No Attack	0.007
LION	C-22 alloy	No Attack	0.002

Refinery Industry

LION C-276 alloy

LION C-22

Coke Refinery					
Vaporizer					
203°F (95°C) — 2 Months					
Corrosion					
Rate					
(mpy) Remarks					
316L Stainless Steel	139	Severe Crevice Attack			
Carpenter 20Cb-3® alloy	227	Partially Dissolved			
Avesta 254 SMO® alloy	83	Pitting, Crevice Attack			
Allegheny AL-6XN® alloy	60	Pitting, Crevice Attack			
LION 625 alloy	29 Pi	tting, Crevice Attack			
LION C-22 alloy	3.4 Slig	ght Crevice Attack			

Chemical Waste Incineration

Rotary Kiln Industrial Organic						
	Quench Duct					
300°F (149°C) — 4 Months						
Corrosion						
Rate						
(mpy) Remarks						
Carbon	Steel	>353		Sample Dissolved		
316L S	tainless Steel	>1	60	Sample Dissolved		
Avesta	254 SMO alloy		83	Severe Pitting Attack		
LION 625 alloy		64 Moderate Pitting Attac		oderate Pitting Attack		
LION	C-276 alloy	53	Мо	derate Pitting Attack		
LION	C-22 alloy	27	Slig	ht Pitting Attack		

Pulp and Paper Industry

Ammonium Sulfite-Type Mill
C-Stage Washer
75°F (24°C) — 8 Months

	Dep	th of Attack
	Pitting	Crevice
	(in.)	(in.)
316L Stainless Steel	0.030	0.045
Alloy 904L	0.023	0.029
Avesta 254 SMO alloy	0.015	No Attack
LION 625 alloy	0.005	No Attack
LION C-22 alloy	0.002	No Attack

Chemical Waste Incineration

Ammonia Stripping Process

Waste Water

160°F (71°C) — 3 Months

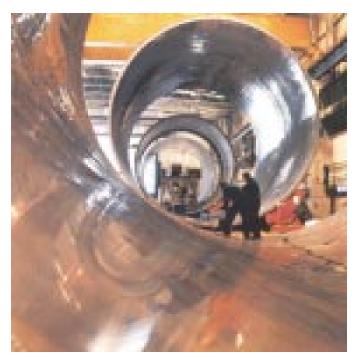
	Dep	oth of Attack
	Pitting	Crevice
	(in.)	(in.)
Carbon Steel	0.040	0.050
316L Stainless Steel	0.005	0.005
Allegheny AL-6XN alloy	0.005	No Attack
LION 625 alloy	0.004	No Attack
LION C-22 alloy	No Attack	No Attack

TYPICAL APPLICATIONS

This large fabrication of LION® C-22® alloy is shown here being readied for shipment to a papermill in the southeast. C-22 alloy was selected for this application after extensive testing in the actual bleach washer environment. It has already given over 10 years of service with no corrosive attack.

Twenty different materials were tested for this hydrofluoric acid prescrubber after the original material failed. C-22 alloy had four times better corrosion resistance than the original material and 20 percent better than the next candidate. The process involves 20 percent HF, 64 percent H₂SO₄ and 16 percent water at 150 to 200°F.

Solid rocket propellant effluents and salt air caused pitting and crevice corrosion attack of stainless steel. C-22 alloy was selected over 19 different alloys for the clamshell bellows after extensive testing. The bellows have been in service for more than 12 years.



Sleeved electrogalvanizing finishing rolls made of LION C-22 alloy are ready for placement in a steel finishing manufacturing line. C-22 alloy helps reduce defects on the rolls which is necessary to produce defect free galvanized steel for the automotive industry.

Typical Applications (continued)

The largest fabrication of LION C-22 alloy known to-date is shown here being thinsheet lined for exposure in a utility flue-gas desulfurization plant. C-22 sheet is still providing excellent service after 10 years.

C-22 alloy was selected to replace a FRP fan because of its durability and corrosion resistance. This fan will handle the incineration of radioactive and hazardous wastes.

Acid pump, fortified with a C-22 alloy sleeve, is still providing excellent service after 9 years in a continuous stainless steel pickling operation. The acid consists of 2 percent hydrofluoric acid, 20 percent hydrochloric acid, and as much as 40 gm/liter of iron, at 170°F.

Conditions were so severe in C-stage bleaching operations at one mill that even C-276 alloy welds were suspect. As a preventive maintenance measure, 3 mm was ground off each weld and replaced with a weld deposit of C-22 alloy. This photo, taken 18 months later, shows the welds virtually unaffected. At this printing, it is still in service after 7 years.

COMPARATIVE AQUEOUS CORROSION DATA*

Media 1	Concentration Weight Percent	Test Tei	mperature (°C)	Average C-22® alloy	e Corrosion Ra C-276 alloy	te Per Year C-4 alloy	
Acetic Acid	99	Boiling		Nil	<1 <1	Nil	<1 <1
Ferric Chloride	10				2	140	7325
			oiling	1			
Formic Acid	88		oiling	<1	1	2	9
Hydrochloric Acid	-	Boiling		3	13	25	1
	1.5		oiling	14	32	64	353
	_2	194	(90)	Nil	1	31	Nil
	_2		oiling	61	51	82	557
	2.5	194	(90)	<1	12	34	72
	2.5	В	oiling	141	85	44	605
	10	В	oiling	400	288	228	642
Hydrochloric Acid	d <u>1</u>	200	(93)	2	41	-	238
+ 42 g/l Fe ₂ (SO ₄)	5	150	(66)	2	5	3	2
Hydrochloric Acid	0	158	(70)	59	26	34	123
+ 2% HF							
Hydrofluoric Acid	1 2	158	(70)	9	9	17	20
	5	158	(70)	14	10	15	16
P ₂ O ₅ (Commerci	al 38	185	(85)	2	9	-	1
Grade)	44	240	(116)	21	100	-	23
,	52	240	(116)	11	33	-	12
P ₂ O ₅ +	38	185	(85)	1	12	-	2
2000 ppm Cl			()				
P ₂ O ₅ +	38	185	(85)	7	45		9
0.5% HF	00	100	(00)	,	10		Ü
Nitric Acid	10	B	oiling	<1	7	7	<1
r victio / tola	65		oiling	134	888	217	21
Nitric Acid +	5	140	(60)	67	207	204	73
6% HF	3	140	(00)	07	201	204	73
Nitric Acid +	5	D .	oiling	12	64	97	713
	ວ	D	Jilli IY	IZ	U 4	31	113
25% H ₂ SO ₄ +							
4% NaCl			-:::	4		44	
Nitric Acid +	5	В	oiling	<1	8	11	1
1% HCI	_						
Nitric Acid +	5	В	oiling	2	21	26	<1
2.5% HCI							
Nitric Acid + 15.8% HCl	8.8	126	(52)	4	33	114	>10,000
*Average of 4-10 tests.							

^{*}Average of 4-10 tests. **To convert mils per year (mpy) to mm per year, divide by 40.

Comparative Aqueous Corrosion Data* (continued)

	Concentration		nperature		e Corrosion Ra	te Per Year, n	nils**
Media	Weight Percent	°F	(°C)	C-22® alloy	C-276 alloy	C-4 alloy	625 alloy
Sulfuric Acid	2	150	(66)	Nil	<1	Nil	Nil
	2		oiling	5	6	6	6
	5	174	(79)	<1	1	1	<1
	5		oiling	9	12	16	16
	10		oiling	12	19	25	37
	20	150	(66)	<1	<1	<1	<1
	20	174	(79)	1	3	2	13
	20	В	oiling	33	39	36	91
	30	150	(66)	<1	1	<1	<1
	30	174	(79)	3	4	3	27
	30	В	oiling	64	55	73	227
	40	100	(38)	<1	<1	<1	<1
	40	150	(66)	<1	1	9	1
	40	174	(79)	9	10	15	35
	50	100	(38)	<1	Nil	<1	1
	50	150	(66)	1	4	13	25
	50	174	(79)	16	12	25	58
	60	100	(38)	<1	<1	1	<1
	70	100	(38)	Nil	Nil	2	<1
	80	100	(38)	Nil	<1	<1	<1
Sulfuric Acid +	5	Во	oiling	26	33	49	151
0.1% HCI							
Sulfuric Acid +	5	Во	oiling	61	49	91	434
0.5% HCI							
Sulfuric Acid +	10	158	(70)	<1	11	24	121
1% HCI							
Sulfuric Acid +	10	194	(90)	94	45	66	326
1% HCI							
Sulfuric Acid +	10	Во	oiling	225	116	192	869
1% HCI							
Sulfuric Acid +	10	В	oiling	29	22	26	55
2% HF							
Sulfuric Acid +	25	158	(70)	11	12	37	110
200 ppm Cl⁻			` '				
Sulfuric Acid +	25	Во	oiling	215	186	182	325
200 ppm Cl⁻			Ü				
Sulfuric Acid +	11.5	Во	oiling	3	42	837	1815
1.2% HCl+			J				
1% FeCl ₃ +							
1% CuCl ₂							
Sulfuric Acid +	23	Bo	oiling	8	55	2155	2721
1.2% HCl +			·······9	· ·			
1% FeCl ₃ +							
1% CuCl ₂ (AST	TMG28B)						
Sulfuric Acid +	50	R	oiling	40	250	143	23
42 g/l	00	<u> </u>	-······9	10	200	. 10	20
Fe ₂ (SO ₄) ₃ (AST	IMG28A)						
*Average of 4-10 tests							
Average of 4-10 tests							

^{*}Average of 4-10 tests.
**To convert mils per year (mpy) to mm per year, divide by 40.

Comparative Immersion Critical Pitting and Critical Crevice-Corrosion Temperatures in Oxidizing NaCl-HCl Solution

The chemical composition of the solution used in this test is as follows: 4 percent NaCl + 0.1 percent $Fe_2(SO_4)_3+0.01$ M HCl. This solution contains 24,300 ppm chlorides and is acidic (pH2).

In both pitting and crevice-

corrosion testing, the solution temperature was varied in 5 deg. C increments to determine the lowest temperature at which pitting corrosion initiated (observed by examination at a magnification of 40X) after a 24-hour exposure period (Critical Pitting Temperature), and the lowest temperature at which crevice corrosion initiated in a 100-hour exposure period (Critical Crevice-Corrosion Temperature).

			al Pitting perature		revice-Corrosion mperature	
Alloy		°C	°F	°C	°F	
LION® C-22® alloy		>150	>302	102	212 (Boiling)	
LION C-276 alloy		150	302	80	176	
LION C-4 alloy		140	284	50	122	
LION® 625 alloy		90	194	50	122	
LION G-30 ® alloy	1	70	158	40	104	
				Allegheny	AL-6XN®	
alloy	70	158	45	113Avesta 2	254 SMO®	
FERRALIUM® alloyal2555		60	122	36	195	
Alloy 904L		45	113	20	68	
Type 317LM Stainless S	teel	35	95	15	59	
Alloy 825		25	77	<u>≤</u> 5	<u><</u> 23	
Carpenter 20Cb-3® alloy		25	68	<u>≤</u> 5	<u><</u> 23	
Type 316 Stainless Stee		20	68	<u>≤</u> 5	≤23	

Comparative Critical Pitting Temperatures in Oxidizing H₂SO₄-HCl Solution

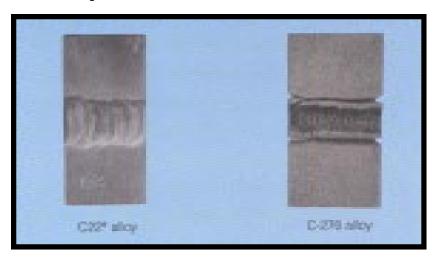
The chemical composition of the solution used in this test is as follows: 11.5 percent H₂SO₄+ 1.2 percent HCl+1 percent FeCl₃+1 percent CuCl₂. This test environment is a severely oxidizing acid solution which is used

to evaluate the resistance of alloys to localized corrosion. It is considerably more aggressive than the oxidizing NaCl-HCl test. Experiments were performed in increments of solution temperature of 5 deg. C for a 24-hour

exposure period to determine the critical pitting temperature, i.e. the lowest temperature at which pitting corrosion initiated (observed at a magnification of 40X).

	Temp			
Alloy	°C	°F		
LION C-22 alloy	120	248		
LION C-276 alloy	110	230		
LION C-4 alloy	90	194		
LION 625 alloy	75	167		

Stress-Corrosion Cracking Data in 20.4 Percent Magnesium Chloride for 1 Week


Critical Ditting

	Test Temperature,	Test Temperature,	Hardness,
Condition	400°F (204°C)	450°F (232°C)	Rockwell
Mill Annealed	No cracks	No cracks	R _B 90
20% Cold Worked	No cracks	No cracks	R _c 33
50% Cold Worked	No cracks	No cracks	R _c 43

THERMAL STABILITY

A practical concern related to an alloy's susceptibility to intergranular corrosion is the heat-affected zone of weldments. Welded test coupons of C-276 and C-22® alloys were exposed to an oxidizing sulfuric acid process solution.* C-276 alloy suffered unusually severe base metal, weld metal, and heat-affected zone attack in this particular environment. In fact only one-third of the coupon thickness in the heat-affected zone

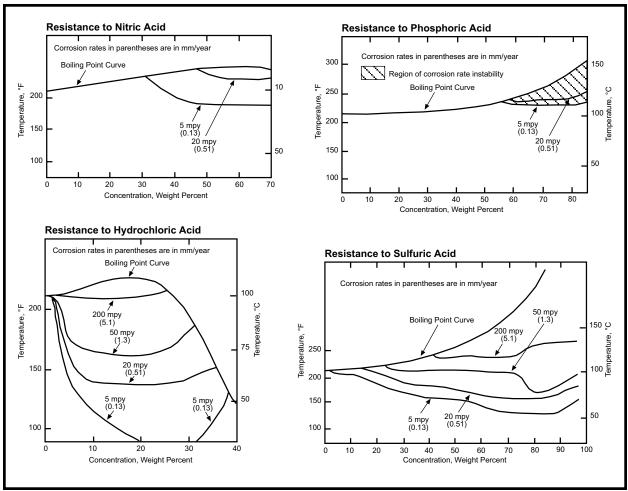
survived the corrosion test. C-276 alloy is seldom attacked to this degree in other media. There was minimal corrosion attack on the C-22 alloy sample.

 * 11% H $_2$ SO $_4$ +3.9% Fe $_2$ (SO $_4$) $_3$ + other chemicals at 302°F (150°C) and overpressurized with 0 $_2$.


Corrosion-Resistant Weld Filler Metal

Many corrosion failures are associated with welds. Reliable, cost effective and practical solutions to corrosion weld problems involve the use of LION C-22 filler metal.

Tests were conducted at the


Los Alamos National Laboratory, New Mexico, in a simulated incinerator off-gas scrub solution for 39 days. Alloy 625 suffered severe base metal and weld metal attack in this particular environment. Moderate attack of the base metal was observed on AL-6XN alloy. C-22 alloy exhibited no corrosion attack of the weld metal and base metal.

3M NaCl+0.1M FeCl ₃ +0.1M NaF 167°F (75°C), pH = 1				
AI	loy	Corrosion Rate		
Base Metal	Filler Weld	(mpy)		
AL-6XN	625	112		
AL-6XN	C-22	72		
AL-6XN ba 625 weld		AL-6XN base C-22 weld		

ISOCORROSION DIAGRAMS*

The isocorrosion diagrams shown on this page were plotted using data obtained in laboratory tests in reagent grade acids. These data should be used only as a guide. It is recommended that samples be tested under actual plant conditions.

^{*}All test specimens were heat-treated at 2050°F (1121°C), rapid quenched and in the unwelded condition.

AVERAGE PHYSICAL PROPERTIES

Physical Property	Temp., °F	British Units	Temp., °C	Metric Units
Density	75	0.314 lb/in. ³	24	8.69 g/cm. ³
Melting Temperature Rang	ge 2475-2550		1357-1399	
Electrical Resistivity	75	44.8 microhm-in.	24	1.14 microhm-m
	212	48.3 microhm-in.	100	1.23 microhm-m
	392	48.7 microhm-in.	200	1.24 microhm-m
	572	49.3 microhm-in.	300	1.25 microhm-m
	752	49.6 microhm-in.	400	1.26 microhm-m
	932	49.9 microhm-in.	500	1.27 microhm-m
	1112	50.2 microhm-in.	600	1.28 microhm-m
Mean Coefficient of	75-200	6.9 microinches/in°F	24-93	12.4 x 10 ⁻⁶ m/m-K
Thermal Expansion	75-400	6.9 microinches/in°F	24-204	12.4 x 10 ⁻⁶ m/m-K
	75-600	7.0 microinches/in°F	24-316	12.6 x 10 ⁻⁶ m/m-K
	75-800	7.4 microinches/in°F	24-427	13.3 x 10 ⁻⁶ m/m-K
	75-1000	7.7 microinches/in°F	24-538	13.9 x 10 ⁻⁶ m/m-K
	75-1200	8.1 microinches/in°F	24-649	14.6 x 10 ⁻⁶ m/m-K
	75-1400	8.5 microinches/in°F	24-760	15.3 x 10 ⁻⁶ m/m-K
	75-1600	8.8 microinches/in°F	24-871	15.8 x 10 ⁻⁶ m/m-K
	75-1800	9.0 microinches/in°F	24-982	16.2 x 10 ⁻⁶ m/m-K
Thermal Diffusivity	70	0.004 in. ² /sec.	21	2.7 x 10 ⁻⁶ m ² /s
	212	0.005 in. ² /sec.	100	3.0 x 10 ⁻⁶ m ² /s
	392	0.005 in. ² /sec.	200	3.5 x 10 ⁻⁶ m ² /s
	572	0.006 in. ² /sec.	300	3.9 x 10 ⁻⁶ m ² /s
	752	0.007 in. ² /sec.	400	4.2 x 10 ⁻⁶ m ² /s
	932	0.007 in. ² /sec.	500	4.6 x 10 ⁻⁶ m ² /s
	1112	0.007 in. ² /sec.	600	4.8 x 10 ⁻⁶ m ² /s
Thermal Conductivity	118	70 Btu-in./ft.2 hr°F	48	10.1 W/m-K
	212	77 Btu-in./ft.2 hr°F	100	11.1 W/m-K
	392	93 Btu-in./ft.2 hr°F	200	13.4 W/m-K
	572	108 Btu-in./ft.2 hr°F	300	15.5 W/m-K
	752	121 Btu-in./ft.2 hr°F	400	17.5 W/m-K
	932	135 Btu-in./ft.² hr°F	500	19.5 W/m-K
	1112	148 Btu-in./ft.² hr°F	600	21.3 W/m-K
Specific Heat	126	0.099 Btu/lb°F	52	414 J/Kg-K
	212	0.101 Btu/lb°F	100	423 J/Kg-K
	392	0.106 Btu/lb°F	200	444 J/Kg-K
	572	0.110 Btu/lb°F	300	460 J/Kg-K
	752	0.114 Btu/lb°F	400	476 J/Kg-K
	932	0.116 Btu/lb°F	500	485 J/Kg-K
	1112	0.123 Btu/lb°F	600	514 J/Kg-K

Average Dynamic Modulus of Elasticity

		Test Temperature		Average Dynamic Modulus of Elasticity	
Form	Condition	°F	(°C)	10 ⁶ psi	GPa
Plate	Heat-treated	Room		29.9	(206)
	at 2050°F	200	(93)	29.4	(203)
	(1121°C)	400	(204)	28.5	(196)
	Rapid Quenched	600	(316)	27.6	(190)
		800	(427)	26.6 (1	(183)
		1000	, ,	(177)	
		1200	(649)	24.8	(171)
		1400	(760)	23.6	(163)
		1600	(871)	22.4	(154)
		1800	(982)	21.1	(145)

Average Room Temperature Hardness

Form	Hardness, Rockwell
Sheet	R _B 93
Plate	R _B 95

Average Impact Strength, Plate*

	V-Notch Impact Strength				
	Room Te	emperature	-320°F	(-196°C)	
Condition	ftlb.	Joules	ftlb.	Joules	
Heat-treated at	260*	353*	259*	351*	
2050°F (1121°C)					
Rapid Quenched					
Aged 100 hrs. at	-	-	259*	351*	
500°F (260°C)					
Aged 100 hrs. at	-	-	259*	351*	
1000°F (538°C)					
Aged 100 hrs. at	-	-	87	118	
1000°F (538°C)					

^{*}Specimens did not break.

AVERAGE TENSILE DATA, SOLUTION HEAT-TREATED

Form	Test Ten °F	nperature °C	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% Offset, Ksi*	Elongation in 2 in. (50.8 mm),
Sheet,	Room		116	59	57
0.028 - 0.125 in.	200	(93)	110	54	58
(0.71 - 3.2 mm)	400	(204)	102	44	57
thick**	600	(316)	98	42	62
	800	(427)	95	41	67
	1000	(538)	91	40	61
	1200	(649)	85	36	65
	1400	(760)	76	35	63
Plate,	Room		114	54	62
1/4 - 3/4 in.	200	(93)	107	49	65
(6.4 - 19.1 mm)	400	(204)	98	41	66
thick***	600	(316)	95	36	68
	800	(427)	92	35	68
	1000	(538)	88	34	67
	1200	(649)	83	32	69
	1400	(760)	76	31	68
Bar,	Room		111	52	70
1/2 - 2 in.	200	(93)	105	45	73
(12.7 - 50.8 mm)	400	(204)	96	38	74
diameter***	600	(316)	92	34	79
	800	(427)	89	31	79
	1000	(538)	84	29	80
	1200	(649)	80	28	80
	1400	(760)	72	29	77

^{*} Ksi can be converted to MPa (megapascals) by multiplying by 6.895.
** Average of 10-20 tests.
*** Average of 16-32 tests.
*** Average of 8-16 tests.

FABRICATION

Heat Treatment

Wrought forms of LION C-22® alloy are furnished in the solution heat-treated condition unless otherwise specified. The standard solution heat treatment consists of heating at 2050°F (1121°C) followed by rapid air cooling or water quenching.

Parts which have been hot formed or severely cold formed should be solution heat-treated prior to further fabrication or installation.

Forming

C-22 alloy has excellent forming characteristics. Cold forming is the preferred method of forming. Because of its good ductility, it can easily be cold-worked. The alloy is generally stiffer than the austenitic stainless steels. Therefore, more energy is required during cold forming.

Formability

Average Olsen

		LIONCup D	epth	
Form	Condition	Alloys	in.	mm
Sheet, 0.028 in.	Heat-treated at 2050°F	C-22	0.49	12.4
(0.71 mm) thick	(1121°C), Rapid Quenched	C-276	0.48	12.2
Sheet, 0.028 in.	Aged at 1600°F	C-22	0.49	12.4
(0.71 mm) thick	(871°C), for 1000 hrs.	C-276	0.48	12.2
Sheet, 0.028 in.	Cold Worked 33%	C-22	0.49	12.4
(0.71 mm) thick		C-276	0.48	12.2
Sheet, 0.028 in.	Cold Worked 33% and	C-22	0.49	12.4
(0.71 mm) thick	Aged at 932°F (500°C)	C-276	0.48	12.2
	for 100 hrs.			

Average Room Temperature Tensile Data, Cold-Worked Sheet

Cold Worked %	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% Offset, Ksi*	Elongation in 2 in. (50.8 mm), %
0	116	59	57
10	130	93	39
20	151	127	23
30	170	151	13
40	192	174	9
50	206	183	10
60	222	202	7

Average Room Temperature Tensile Data, Cold-Worked and Aged** Sheet

Cold Worked %	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% Offset, Ksi*	Elongation in 2 in. (50.8 mm), %
0	116	62	73
10	141	110	42
20	165	141	28
40	206	193	15
60	250	244	6

 $^{^\}star$ Ksi can be converted to MPa (megapascals) by multiplying by 6.895. ** Aged 100 hours at 932°F (500°C).

Average Room Temperature Hardness, Aged Sheet*

Aging Tempe	erature,			Col	d Reductio	ո, %		
°F	(°C)	0	10	20	30	40	50	60
No Agi	ng	R _B 90	R _c 24	R _c 33	R _c 36	R _c 40	R _c 41	R _c 43
940	(504)	R _B 94	R _c 24	$R_c 32$	$R_c 37$	R_c 42	$R_c 45$	R _c 48
1010	(543)	R _B 95	R _c 26	R _c 32	R _c 41	R _c 44	R _c 45	R _c 48
1070	(577)	R _B 95	R _c 28	R _c 32	R _c 39	R _c 40	R _c 44	R _c 48
1130	(610)	$R_{_{\rm B}}$ 93	R _c 22	R _c 27	R_c 33	R _c 37	R _c 41	R _c 45
1200	(649)	R _B 93	R _c 21	R _c 27	R _c 33	R _c 37	R _c 41	R _c 45
1260	(682)	R _B 95	R _c 20	R _c 25	R _c 31	R _c 36	R _c 41	R _c 44
1510	(821)	R _B 94	R _c 21	R _c 26	R _c 32	R _c 35	R _c 36	R _c 37
1770	(966)	R _B 93	R _c 21	R _c 21	R _c 21	R _c 23	R _c 25	R _c 25
1980	(1082)	R _B 83	R _B 83	R _B 84	R _B 84	R _B 83	R _B 83	R _B 80

^{*}Aged 100 hours.

Average Impact Strength, Aged Plate

Aging Temperature,		Aging Time,		pact Strength (-196°C)	
°F	(°C)	hrs.	ftlb.	Joules	
1000	(538)	1	259*	351*	
		10	259*	351*	
		100	259*	351*	
1200	(649)	1	259*	351*	
		10	259*	351*	
	100	99	134		
1400	(760)	1	259*	351*	
		10	84	114	
		100	28	38	
1600	(871)	1	118	160	
		10	38	52	
		100	3	4	
1800	(982)	1	114	155	
		10	44	60	
		100	12	16	

^{*}Specimens did not break.

WELDING

LION® C-22® alloy is readily welded by gas tungsten arc (GTAW), gas metal arc (GMAW), and shielded metal arc (SMAW) welding techniques. Its welding characteristics are similar to those for LION C-276 and C-4 alloys.

Submerged arc welding is not recommended as this process is characterized by high heat input to the base metal and slow cooling of the weld.

Base Metal Preparation

The joint surface and adjacent area should be thoroughly cleaned before welding. All grease, oil, crayon marks, sulfur compounds, and other foreign matter should be removed.

Filler Metal Selections

Matching composition filler metal is recommended for joining C-22 alloy. For gas-tungsten-arc and gas-metal-arc welding, C-22 filler wire (ER NiCrMo-10) is recommended. For shielded metal arc welding, C-22 covered electrodes (ENiCrMo-10; UNS W86022) are recommended.

Detailed fabricating information for C-22 alloy is available in the booklet, Fabrication of

<u>LIONY</u> <u>Corrosion-</u> <u>Resistant Alloys</u> (H-2010) and <u>C-22</u> <u>Alloy Welding Information</u> (H-2066).

Average Transverse Tensile Data, Weldments*

			perature	Ultimate Tensile Strength,		2 in. (50.8 mm),
Form	OTANA/	°F	°C	Ksi**	Ksi**	%
Sheet,	GTAW	Room	(500)	108	61	30
0.125 in. (3.2 mm)		1000	(538)	79	40	23
thick						
	OTANA/	D		440	50	
Plate,	GTAW	Room	/F20\	116	56 36	60 51
1/4 in. (6.4 mm)	GMAW	1000	(538)	88 111	57	43
thick	(short arc)	Room 1000	(538)	85	39	45 46
			(330)			
Plate,	GTAW	Room	/ 520\	114	65	47
1/2 in.		1000 1400	(538) (760)	86 71	45 39	52 30
(12.7 mm) thick	GMAW	Room	(760)	109		38
UNICK	(short arc)	1000	(538)	82	45	38
	(SHOIT AIC)	1400	(760)	63	39	25
	GMAW	Room	(100)	110	67	37
	(spray)	1000	(538)	80	45	33
	(00.03)	1400	(760)	68	41	27
Plate,	SMAW	Room	(/	111	56	58
3/4 in.						
(19.1 mm)						
thick						
Plate,	GTAW	Room		106	54	44
1.0 in.	(short arc)	752	(400)	92	38	48
(25.4 mm) G	MAW	Room		109	56	51
thick	(spray)	752	(400)	93	35	59
Plate,	GMAW	Room		109	56	54
1.5 in.	(short arc)	752	(400)	92	38	59
(46.1 mm)						
thick						

Average Tensile Data, All-Weld Metal*

Weld	Test Ten	nperature	Ultimate Tensile Strength,	Yield Strength at 0.2% Offset,	Elongation in 2 in. (50.8 mm),
Туре	°F	°C	Ksi**	Ksi**	%
GTAW	Room		113	76	47
	500	(260)	94	60	52
	1000	(538)	87	57	51
GMAW	Room		113	72	52
(short arc)	500	(260)	94	60	52
	1000	(538)	84	54	55
SMAW	Room		110	74	47
	752	(400)	87	56	49

Average Impact Strength, Weldments

V-Notch* Impact Strength **Room Temperature** -320°F (-196°C) Condition **Joules Joules** ft.-lb. ft.-lb. Plate, 1/2 in. GTAW 148 201 150 111 GMAW (short arc) 135 (12.7 mm) thick 183 97 131 GMAW (spray) 144 195 118 160 Plate, 3/4 in. **GTAW** 148 201 118 160 (19.1 mm) thick GMAW (short arc) 121 164 115 156 GMAW (spray) 149 202 102 138 53 72 **SMAW** 76 103

^{*}Notch was located in the center of the weldment on the transverse edge.

Typical Bend	Test Data,	Welded	Plate*
--------------	------------	--------	--------

Weld	Face Bend,	Side Bend		Root Bend,
Туре	2T	2T	1 1/2T	2T
GTAW	Passed	Passed	Passed	Passed
GMAW (short arc)	Passed	Passed	Passed	Passed
GMAW (spray)	Passed	Passed	Passed	Passed
SMAW	Passed	Passed	-	Passed

^{*}Duplicate specimens, 1/2 in. (12.7 mm) thick. Tested using AWS Specification 5.11 as a guide.

Room Temperature Tensile Data of Weldments After Thermal Aging

Welding			Ultimate Tensile Strength,	Yield Strength at 0.2% Offset,	Elongation in 2 in. (50.8mm),
Method	Condition	Specimen	Ksi*	Ksi*	%
GTAW	As Welded	Unnotched	114	58	60
	Aged 4000 hrs.	Unnotched	114	59	60
	at 842°F (450°C)				
	As Welded	Notched	147	84	-
	Aged 4000 hrs.	Notched	152	85	-
	at 842°F (450°C)				
GMAW	As Welded	Unnotched	106	54	44
	Aged 4000 hrs.	Unnotched	110	55	58
	at 842°F (450°C)				
	As Welded	Notched	146	82	-
	Aged 4000 hrs.	Notched	150	86	-
	at 842°F (450°C)				

^{*}Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

Average Impact Strength, Weldments

V-Notch Impact Strength

		v rioton impaot otrongin				
		Room Temperature		-320°F (-196°C)		
Method	Condition	ftlb.	Joules	ftlb.	Joules	
GTAW	As Welded	148	201	118	160	
	Aged 4000 hrs.	124	168	-	-	
	at 842°F (450°C)					
GMAW	As Welded	144	195	106	144	
	Aged 4000 hrs.	124	168	106	144	
	at 842°F (450°C)					

Dissimilar Weldment Mechanical Data, All-Weld Metal, Room Temperature

Weld Type	Base Metal	Weld Metal	Ultimate Tensile Strength, Ksi*	Yield Strength at 0.2% Offset, Ksi*	Elongation in 2 in. (50.8mm), %	V-Notch Impact Strength ftlb.
GTAW	316L	C-22	115	84	40	121
SMAW	316L	C-22	113	73	41	58
GTAW	904L	C-22	113	74	44	136
SMAW	904L	C-22	110	72	44	61
GTAW	C-22	C-22	113	76	47	148
SMAW	C-22	C-22	113	71	43	60

^{*}Ksi can be converted to MPa (megapascals) by multiplying by 6.895.

MACHINING

The following are guidelines for performing typical machining operations upon C-22® alloy wrought stock. Exact details for

specific machining jobs will vary with circumstances of the particular job. Other tool materials not listed here may be suitable for machining C-22 alloy under various conditions.

Recommended Tool Types and Machining Conditions

Operations	Carbide Tools	High Speed Steel Tools
Drilling	C-2 grade not recommended, but tipped drills may be successful on rigid setup of no great depth. The web must be thinned to reduce thrust Use 135° included angle on point, Gun drill can be used. Speed: 50 sfm. Oil² or water-base³ coolant. Coolant-feed carbide tipped drills may be economical in some setups.	M-33, M-40 series¹ or T-15: Use short drills, heavy web, 135° crank-shaft, grind points wherever possible. Speed: 10-15 sfm. Feed: 0.001 in. rev. 1/8 in. dia. 0.002 in. rev. 1/4 in. dia. 0.003 in. rev. 1/2 in. dia. 0.005 in. rev. 3/4 in. dia. 0.007 in. rev. 1 in. dia. Oil or water-base coolant. Use coolant feed drills if possible.
Normal Roughing; Turning or Facing	C-2 or C-3 grade: Negative rake square insert, 45° SCEA ⁴ , 1/32 in. nose radius. Tool holder: 5° neg. back rake, 5° neg. side rake. Speed: 90 sfm depending on rigidity of set up, 0.010 in. feed, 0.150 in. depth of cut. Dry ⁵ , oil, or water-base coolant.	
Finishing; Turning or Facing	C-2 or C-3 grade: Positive rake square insert, if possible, 45° SCEA, 1/32 in. nose radius. Tool holder: 5° pos. back rake, 5° pos. side rake. Speed: 95-110 sfm, 0.005-0.007 in. feed, 0.040 in. depth of cut. Dry or water-base coolant.	

NOTES: 1 M-40 series High Speed Steels include M-41, M-42, M-43, M-44, M-45 and M-46 at the time of writing. Others may be added and should be equally suitable.

² Oil coolant should be a premium quality, sulfochlorinated oil with extreme pressure additives. A viscosity at 100°F from 50 to 125 SSU.

³ Water-base coolant should be premium quality, sulfochlorinated water soluble oil or chemical emulsion with extreme pressure additives. Dilute with water to make 15:1 mix. Water-base coolant may cause chipping and rapid failure of carbide tools in interrupted cuts.

⁴ SCEA - Side cutting edge angle of lead angle of the tool.
5 At any point where dry cutting is recommended, an air jet directed on the tool may provide substantial tool life increase. A water-base coolant mist may also be