UNS S32760 / 1.4501 / F55

SUPER DUPLEX STAINLESS STEEL

TYPICAL APPLICATIONS

Pumps, valves, chokes, Xmas trees, pipework / flanges, bolting, connectors & manifolds. In oil and gas industry. Equipment in defence, chemical and marine industries.

PRODUCT DESCRIPTION

Material to UNS S32760 (and the other specifications listed below) is described as a super duplex stainless steel with a microstructure of 50:50 austenite and ferrite. The steel combines high mechanical strength (typically up to 600 MPa yield strength) and good ductility with outstanding corrosion resistance to marine environments and a wide, diverse range of oil & gas production environments. The alloy is supplied with a PREn (Pitting Resistance Equivalent) at >40.0 which guarantees high resistance to pitting corrosion. In addition, the steel offers high resistance to crevice corrosion and stress corrosion cracking. Ambient and subzero (down to minus 50°C) notch ductility is good. These attributes mean that this super duplex steel can be used successfully as an alternative to 300 series stainless steel (such as type 316), standard 22%

Cr duplex steel and precipitation hardening stainless steels. Where appropriate the alloy can be considered in lieu of more costly Grade 5 titanium or nickel based alloys.

AVAILABILITY

Bar, forgings, sheet, plate, pipe, tube, closed die forgings, flanges and welding consumables.

MATERIAL SPECIFICATIONS

- UNS S32760 in various ASTM product form specifications
- EN 10088-3 1.4501 (Grade X2CrNiMoCuWN25-7-4)
- NORSOK MDS D51 to D55, D57 & D58
- ASTM A182 F55
- NACE MR01-75 (latest revision) / ISO 15156

MACHINABILITY / WELDING

The machining and welding of this grade of super duplex stainless steel presents no particular problems. Guidance notes are available upon request.

CHEMICAL COMPOSITION %												
Weight (%)	С	Mn	Si	S	P	Cr	Ni	Mo	Cu	N	W	PREn
Min.						24.0	6.0	3.0	0.50	0.20	0.50	40.0
Max	0.03	1.00	1.00	0.015	0.035	26.0	8.0	4.0	1.00	0.30	1.00	

 $\overline{PREn} = Cr \% + 3.3Mo\% + 16N\%$

MINIMUM MECHANICAL PROPERTIES AT ROOM TEMPERATURE (EN 10088-3 1.4501 MAX DIAMETER 160mm – SOLUTION TREATED)						
Ultimate Tensile Strength	730 – 930 MPa	(106 – 135 ksi)				
0.2% Proof Strength	530 MPa	(77 ksi)				
Elongation	25 %					
Hardness (Max)	290 HB					
Impact	100 J	(74 ft.lb)				

TYPICAL PHYSICAL PROPERTIES		
Density	7.8	kg/dm ³
Specific Thermal Capacity at 20 ^o C	500	J.Kg ⁻¹ .K ⁻¹
Mean Coefficient of Thermal Expansion at 20 - 100°C	13.0	$\times 10^{-6} \text{ K}^{-1}$
Thermal Conductivity at 20 ^o C	15	W.m ⁻¹ .K ⁻¹
Electrical Resistivity at 20 ^o C	0.80	Ω .mm 2 .m $^{-1}$
Modulus of Elasticity at 20 ^o C	200	GPa
Magnetisable	Yes	